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Introduction

This paper describes a finite ‘difference scheme for the numerical
solution of divu = p, curlu=27_ in Ié which does not employ vector and
scalar potentials.

A difficulty in considering any naive finite difference scheme for these
equations arises from the fact that the differential equations are
overdetermined unless the compatability condition div curl u = 0 is imposed
and there 1s then a need to describe a determined system of algebraic
equations for u. This problem does not arise in two dimensions where a
scheme for the Cauchy-Riemann equations, similar to that proposed ﬁere, was
described in Rose [4] and was effectively employed by Gatski, Grosch, and Rose
[1]. However, the discussion in [4) 1lacked a satisfactory proof of
convergence.‘

A fact of theoretical and practical importance 1is that the solution of
the differential equations may be obtained in the form u = v + w where
div v. = 0 and <curl w = 0. We shall show that a related decomposition
applies to the finite problem as well. However, we shall not introduce the
vector and scalar potentials v = curl z, w = grad ¢ by means of which the
continuous problem may, by employing a particular solution of
curl curl z = G, be reduced to solving V2¢ = p. By not employing such
potentials we hope to examine the algebraic problem underlying a direct finite
difference approach to the system of differential equations and, also, to
describe a scheme which may be of practical use when, as 1s common, accurate
values of grad u at the boundary of a domain are required and which need not

be simply accomplished when finite difference schemes based upon potential

formulations are employed.
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Noting that the most useful identities which lead to norm estimates for
the solution of the continuous problem are based upon the use of integration-
by-parts we introduce at the outset an inner product in a finite approximation
space and then impose conditions which permit summation-by-parts to play the
same role in the finite problem as 1integration-by-parts plays in the
continuous case. This leads directly to a variational formulation of the
finite problem and the resulting finite difference equations (givé# by (3.1)
and (3.2)) emerge as the admissibility conditions and the Euler equations for
the variational problem. A natural consequence, also, are norm estimates
whose use immediately establishes the convergence of the scheme. While these
estimates imply that the central differences of the solution u, of the
finite difference scheme as well as u, 1itself are first order accurate these
results mgf, not the best possible since, in the two-dimensional case,
numerical results indicate that u, 1s second order accurate [1}.

The fi;ite difference equations (3.1) and (3.2) which arise from this
approach are compact in the sense that they describe relationships between
values of b, on the faces of a representative computational cell. They also
lead, with a considerable reduction in computational effort, to a box-scheme
in which variables associated with the vertices of a cell are employed. While
an SOR type of solution method due to Kaczmarz [3] can be employed to solve
this type of system, methods more specific to equations of this type would be

highly desirable. We plan to report on several such methods in a forthcoming

paper.



1. A Summation Identity

Let D be a bounded region in ®  with boundary ' on which n 1is the
outward unit normal. We consider a steady, inviscid, incompressible flow in
D having specified distributions of vorticity £ and sources p, the mass

flux over the surface being prescribed. Thus, if u 18 the velocity, then

curlu= ¢, divu= o in D
(1.1)

20_-= g on P’

where, necessarily,

[ gdA = fpdv, [ (Cen)dA = O,
r D T

in which the latter condition arises from div curl u = 0.-

An easily established identity resulting from the use of integration by

parts is
2 2., 2
(1.2) tgrad ut” = [ [(div w) ™+ (curl w)“ldv + [ (u*V)(u-n)da,
D T
in which
grad u = (6 »0_ ,0 )_
1 *2 %3

~
@
m

)
6;;) and

lgrad gﬁz = [ (gradzu1 + gradzu2 + grad2u3)dV.
D
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Cover D by regular cells {n} each of volume AV = AxlezAx3 whose
faces are parallel to the coordinatebaxes; the result is a covering domain
Dh’ h = max Axi s whose corresponding boundary Ph is formed by faces of
i

{n} each of representative area AA. Define

sy = [u(xi+Axi/2) - u(xi-Axi/Z)]/Axi
(1.3)

u1 = [u(xi+Axi/2) + u(xi-AXi/z)]/z,

so that biu = 1lim us for Axi + 0. Then corresponding to the product

rule bi(uv) = ubiv + vbiu is the summation-by-parts formula
i i
(1.4) L (uv),i =ulv,, + v us

In order to help emphasize the natural correspondence between discrete
and continuous results we shall let gradh, divy, curlh denote the operators
resulting by substituting central difference approximations in the
corresponding differential operators. Then Gauss’ theorem applies in the

discrete form

(1.5) A ) div, u AV = % (uen)AA.
by Ty

If r and s are 3 X 3 matrix valued functions we let

(r,s)h = X (2 rijsij)AV
Dh ij
(1.6)
nrn2 Z (r,xr)e



We shall also find it convenient to employ the elementary tensor €

ik
defined by
Eijk = 1, (i,3,k) = even permutation of (1,2,3),
= -], (i,j,k) = odd permutation of (1,2,3),
= 0, any equal indices;
thus
curl

wu=(Ju, e ).
h AR

Using the notation (l1.3) consider the finite difference equations

UygT U5 T Sefigx (curly v =)
(1.7) ) in Dh
Z u oy =P (div, u = o)
with
u-°*n=g in Fh.
Take s = s(u) = gradh.g = (ui j) and consider a choice of r = r(v)
’

such that summation-by-parts is possible in (r(v),s(u))y: since

rii(p - X uj,j)’

r,,u
ii'i,1i j#1

(1.8)

Tigug,g " Tag(Uy g T Getppds 3P

the notation (l.3) suggests the choice r = r(v) given by



= ik #4 4
T11 % Vig ’ 1#31+k

(1.9)
i#3.

Using (1.4) and (1.8) as well as a certain amount of formal manipulation, this

leads to
(1.10) | Z Tyy(V)s () = pp” + LeL" + div, g
+ ¥ uidi + J(T v 117y ),
1 { #3374
in which
p’ = 2 Vil;_,
1##k
& = (£],85,85) with
i
g, = y v ’
ko yaya 1 "k
a = (4y,9,,9,) with
(1.11) = v,,u, +v,,u -u (vk + vj ) 1#§#k
. S 94 T V4 ' T "1V T Yk
R While Gi = 5: (vl:; 1- vji j)
i#j#k j’ ’
and
Tij ui uio
When
(1.12) o = (o,) =0, Tij = 0,




in (1.10) there then results the summation identity

(1.13) (r(v),s()), = T (pp" + LeL)HAV + | (g°n)AA.
by Th

Note that the expression (r(v),s(u)), involves only averages or differences
of v or u, i.e., only the values of these variables on the faces of the
elementary cells {n} which cover D. The same is true of the defining

equations (l1.7) as well as conditions (1.12)

2. A Variational Formulation

Consider the finite dimensional space Hy, having the imner product

(r(v),s—(u))h.i In Hh the spaces Q(v), Q(u) defined by

Q(v): g =0,0=0 in Dh

(2.1) vij =0 (3#) on I"h
Q(u): p =0, Tij =0 in Dh

u*n =0 on I"h,

are orthogonal, i.e., (Q(v),Q(u)) = 0. Suppose that the manifolds

Qo(v): iZjvijEjik = Ci(, c=0 in Dh

vij = bjg (j#1) on I‘h

(2.2) 4 Qo(u): divh u=p in Dh
13°0

un =g on T,



have a common point of intersection (u*,v*) satisfying r(v*) = g(u*). This
point may be obtained as the solution of the following variational problems

(c.f. [11):

I. min fr(v) = s(u*)l =0
vV E Qo(v)
(2.3)
1I. min fr(v*) - s(u)l = 0.
u € Qo(u)

These variational problems are reciprocal in the sense that the admissibility
conditions for one are the Euler equations for the other.

As a result, (1.13) yields

(2.4) . lgrad

h u*ﬂz = z [(div u*)2 + (curlhu*)z]AV + X (gf-g)AA,
r

h
Dy h

* % %
where, 1f q = (ql;qzaq:;)s

* * * * *
(2.5) q = (bjg)uj + (Gkg)uk - g(vj§ + vki).

The common solution v* and u* of the variational problems (2.3) are

thus related by r(v*) = s(u*), i.e.,

* \jk  * IRt S
(2.6) (vii) =uy g ( ) u

and satisfy equatioms (2.12). If g =0 on T reference to (2.5) shows that

g*en = 0 also; for the homogeneous problem in which divh_g = 0,

curlh‘g =0, and g =0 (2.4) then implies grady u=0 in D, and it is



follows that u = 0 in Dh. The difference equations (2.2) and (2.6) thus
have a unique solution.

It 1is easy to verify that these equations are consistent with éhe
differential equations (l.l) (the compatability conditions Bibju = 6j61u

imply the consistency of the condition o6 =0 1in (2.2); the correspondence of

(2.4) with (1.2) is also evident).

3. The Algebraic Problem

In the three-dimensional case the algebraic system expressed by (2.6) and
(2.2) 1s overdetermined. This section will describe a finite difference

scheme which results in a determined system of equations.

3 cells and that I, has 682 cell

faces. There-.are then a total of f = 3N2(N+1) faces of cells [n} which lie

Suppose ' D, 1s composed of N

in D, and Fh. The values of v and u in (2.6) and (2.2) are associated
with the faces of these cells, hence there are a total of 9f variables v and
3f variables u to be determined. The number of admissibility conditions
(2.2) for the manifold Qq(v) is 7N3 + 12N2 while Qo(u) involves

7N3 + 6N2 the additional 9N3  conditions (2.6) expressing r(v) = s(u) thus
lead to a total of 2383 + 1882 conditions for the (9+3)f wvariables.

In order to obtain a determined system of algebraic equations for the
3f = 9N2(N+1) variables u we may add to the w3 + 6n2 admissibility

3 4+ 382 admissibility conditions

conditions for Qo(u) any additional 2N
for Qo(v) since the latter also express the Euler conditionns for the

variational problem for wu. Specifically, we may consider the following: to

the 9N3 + 6N2 equations

-10-
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u3,2 - u2’3 = Cl in Dh
(3.1) u1’3 - u3,1 = Cz
ul =y (1#1)
uen =g on Ph’
impose the additional conditions
(3-2) u2,1 - ul’z = C3’

in any 3n2 cells in Dy. The result is then a determined system of
algebraic equations whose solution provides wu*. The variational formulation
shows that'eduation (3.2) will also be satisfied in each of the N3 cells
of Dy .

The relationship of this result to the continuous problem may be
interpreted as follows: the identity div curl w = 0 which implies a linear
relationship between the components of the vorticity C=curlw i1s a
consequence of the compatability conditions bibjw = ajbiw. This dependency
is only approximately expressed by the finite difference equations; here one
of the components of curl, w = £ may be given at 3N%  cells whereas the
other two components are to be specified throughouf the N3 cells of Dy
(3.1); then, necessarily, curlh‘g = §{ throughout Dh.

We shall not describe effective numerical procedures to solve (3.1) and
(3.2) except to observe that the general SOR type scheme described by Kaczmarz
(3] 1is applicable. This schéme was utilized in [2] to treat this problem in

two-dimensions where, it 1is worth observing, a determined system of finite-

difference equations is described by

-11-
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Uyy T Yy, = C3 in D
(3.3) ul = o (1#1)
u°n =g on Fh.

Box-variables

The difference equations (3.1) and (3.2) (in two-dimensions, (3.3)) can
be more economically solved by the use of box~variables described as follows:
in a cell n let w, denote a face parallel to x; = const. and let

u(wi) indicate a value assoclated with the face Wy which arises in the
finite difference equations. Associate with the vertices of the cell =
values Zy called box-variables, satisfying

(3.4) - ww) =%, 1#3tk

Then the conditions g} =_gq (1 #31) 1in (3.1) are satisfied identically and
the remaining equations in (3.1) and (3.2) reduce in numﬁer to a total of
3N2(N+3). The total number of variables introduced by (3.4) is 3(N+1)3 8o
that the components of 2z may be given arbitrarily at (3N+1) vertices in
order to solve (3.1) and (3.2) in terms of the box-variables z. In contrast,
in two dimensions the components of 2z may be given arbitrarily at one vertex

point.

-12-



4. Convergence

For an arbitrary mesh-valued function u  such that uen =0 on T

the identity (1.10) leads, by taking r(v) = s(u), to

(4.1)
2 2 2 i
lgrad, ul”™ = X [(div .g) + (curl u) ]AV + ) E (u o, + X v T )AV.
h — h h = i1 31,3 13
D D1 j#i
h h
Let & denote the difference between the solution u of the
differential equation (1.1) and the solution u, of the finite difference
equations (3.1) and (3.2). Noting (1.11) and (2.6), then o(g h) = O(hz) R
2 2 2
(e h) = 0(h™), while curlh‘£ n = 0(h™) and div & = 0th™). Thus
" grad, € ; I = 0(h) and hence also e I = O(h). As noted 1in the

h—h h

introduction, this may not be the strongest possible estimate; however it is
sufficient "to establish the convergence of the finite-difference scheme (3.1)-

(3.2).

5. Concluding Remarks

The accurate solution of boundary value problems depends critically upon
an accurate treatment of the boundary conditions. Because the finite
difference scheme described above 1is based upon the use of rectangular
subdomains it can lead to an inaccurate representation of data on curved
boundaries. However, if simple finite difference analogue of the chain rule
which has been described in Philips and Rose [5] is employed at boundarieg to
transform the difference equations from a rectangular cell a more effective
means of treating nonrectangular domains can result.

Finally, Tanabe [6] has shown that the Kaczmarz algorithm can be applied

13-



to obtain the least squares solution of a system of equations. This permits a
direct means of treating (3.1) when the vorticity equation (3.2) for C3 is
imposed throughout D,. The treatment of (1.1) as described by (3.1) and
(3.2) (or using the box variables (3.4)) should help clarify the relationship

of the least squares problem to a fully determined algebraic system.
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